Files
gosec/analyzers/util.go
oittaa 7284e15230 Refactor Analyzers: Unify Range Logic & Optimize Allocations (#1464)
* refactor

* optimizations

* Refactor analyzers: unify range logic and optimize allocations- Centralize numeric range analysis in util.go (shared by G115/G602).- Implement object pooling for slice_bounds and hardcoded_nonce.- Update conversion_overflow tests to use real analyzer logic.

* Refactor RangeAnalyzer
2026-01-14 10:52:35 +01:00

660 lines
17 KiB
Go

// (c) Copyright gosec's authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package analyzers
import (
"fmt"
"go/constant"
"go/token"
"go/types"
"log"
"math"
"os"
"strconv"
"sync"
"golang.org/x/tools/go/analysis"
"golang.org/x/tools/go/analysis/passes/buildssa"
"golang.org/x/tools/go/ssa"
"github.com/securego/gosec/v2/issue"
)
// MaxDepth defines the maximum recursion depth for SSA analysis to avoid infinite loops and memory exhaustion.
const MaxDepth = 20
const (
minInt64 = int64(math.MinInt64)
maxUint64 = uint64(math.MaxUint64)
maxInt64 = uint64(math.MaxInt64)
)
// SSAAnalyzerResult contains various information returned by the
// SSA analysis along with some configuration
type SSAAnalyzerResult struct {
Config map[string]any
Logger *log.Logger
SSA *buildssa.SSA
}
// BaseAnalyzerState provides a shared state for Gosec analyzers,
// encapsulating common fields and reusable objects to reduce allocations.
type BaseAnalyzerState struct {
Pass *analysis.Pass
Analyzer *RangeAnalyzer
Visited map[ssa.Value]bool
FuncMap map[*ssa.Function]bool // General purpose function set
BlockMap map[*ssa.BasicBlock]bool
ClosureCache map[ssa.Value]bool
Depth int
}
var (
visitedPool = sync.Pool{
New: func() any {
return make(map[ssa.Value]bool, 64)
},
}
funcMapPool = sync.Pool{
New: func() any {
return make(map[*ssa.Function]bool, 32)
},
}
closureCachePool = sync.Pool{
New: func() any {
return make(map[ssa.Value]bool, 32)
},
}
blockMapPool = sync.Pool{
New: func() any {
return make(map[*ssa.BasicBlock]bool, 32)
},
}
)
// NewBaseState creates a new BaseAnalyzerState with pooled maps.
func NewBaseState(pass *analysis.Pass) *BaseAnalyzerState {
return &BaseAnalyzerState{
Pass: pass,
Analyzer: NewRangeAnalyzer(),
Visited: visitedPool.Get().(map[ssa.Value]bool),
FuncMap: funcMapPool.Get().(map[*ssa.Function]bool),
BlockMap: blockMapPool.Get().(map[*ssa.BasicBlock]bool),
ClosureCache: closureCachePool.Get().(map[ssa.Value]bool),
}
}
// Reset clears the caches and maps for reuse within an analyzer run.
func (s *BaseAnalyzerState) Reset() {
if s.Analyzer != nil {
s.Analyzer.ResetCache()
}
clear(s.Visited)
clear(s.FuncMap)
clear(s.BlockMap)
clear(s.ClosureCache)
s.Depth = 0
}
// Release returns the pooled maps and analyzer to their pools.
func (s *BaseAnalyzerState) Release() {
if s.Analyzer != nil {
s.Analyzer.Release()
s.Analyzer = nil
}
if s.Visited != nil {
clear(s.Visited)
visitedPool.Put(s.Visited)
s.Visited = nil
}
if s.FuncMap != nil {
clear(s.FuncMap)
funcMapPool.Put(s.FuncMap)
s.FuncMap = nil
}
if s.ClosureCache != nil {
clear(s.ClosureCache)
closureCachePool.Put(s.ClosureCache)
s.ClosureCache = nil
}
if s.BlockMap != nil {
clear(s.BlockMap)
blockMapPool.Put(s.BlockMap)
s.BlockMap = nil
}
}
// ResolveFuncs resolves a value to a list of possible functions (e.g., closures, phi nodes).
// It reuses the state's ClosureCache to avoid cycles and redundant work.
func (s *BaseAnalyzerState) ResolveFuncs(val ssa.Value, funcs *[]*ssa.Function) {
if val == nil || s.Depth > MaxDepth {
return
}
if s.ClosureCache[val] {
return
}
s.ClosureCache[val] = true
s.Depth++
defer func() { s.Depth-- }()
switch v := val.(type) {
case *ssa.Function:
*funcs = append(*funcs, v)
case *ssa.MakeClosure:
*funcs = append(*funcs, v.Fn.(*ssa.Function))
case *ssa.Phi:
for _, edge := range v.Edges {
s.ResolveFuncs(edge, funcs)
}
case *ssa.ChangeType:
s.ResolveFuncs(v.X, funcs)
case *ssa.UnOp:
if v.Op == token.MUL {
s.ResolveFuncs(v.X, funcs)
}
}
}
// IntTypeInfo represents integer type properties
type IntTypeInfo struct {
Signed bool
Size int
Min int64
Max uint64
}
// isSliceInsideBounds checks if the requested slice range is within the parent slice's boundaries.
func isSliceInsideBounds(l, h int, cl, ch int) bool {
return (l <= cl && h >= ch) && (l <= ch && h >= cl)
}
// isThreeIndexSliceInsideBounds validates the boundaries and capacity of a 3-index slice (s[i:j:k]).
func isThreeIndexSliceInsideBounds(l, h, maxIdx int, oldCap int) bool {
return l >= 0 && h >= l && maxIdx >= h && maxIdx <= oldCap
}
// BuildDefaultAnalyzers returns the default list of analyzers
func BuildDefaultAnalyzers() []*analysis.Analyzer {
return []*analysis.Analyzer{
newConversionOverflowAnalyzer("G115", "Type conversion which leads to integer overflow"),
newSliceBoundsAnalyzer("G602", "Possible slice bounds out of range"),
newHardCodedNonce("G407", "Use of hardcoded IV/nonce for encryption"),
}
}
// getSSAResult retrieves the SSA result from analysis pass
func getSSAResult(pass *analysis.Pass) (*SSAAnalyzerResult, error) {
result, ok := pass.ResultOf[buildssa.Analyzer]
if !ok {
return nil, fmt.Errorf("no SSA result found in the analysis pass")
}
ssaResult, ok := result.(*SSAAnalyzerResult)
if !ok {
return nil, fmt.Errorf("the analysis pass result is not of type SSA")
}
return ssaResult, nil
}
// newIssue creates a new gosec issue
func newIssue(analyzerID string, desc string, fileSet *token.FileSet,
pos token.Pos, severity, confidence issue.Score,
) *issue.Issue {
file := fileSet.File(pos)
// This can occur when there is a compilation issue into the code.
if file == nil {
return &issue.Issue{}
}
line := file.Line(pos)
col := file.Position(pos).Column
return &issue.Issue{
RuleID: analyzerID,
File: file.Name(),
Line: strconv.Itoa(line),
Col: strconv.Itoa(col),
Severity: severity,
Confidence: confidence,
What: desc,
Cwe: issue.GetCweByRule(analyzerID),
Code: issueCodeSnippet(fileSet, pos),
}
}
func issueCodeSnippet(fileSet *token.FileSet, pos token.Pos) string {
file := fileSet.File(pos)
start := (int64)(file.Line(pos))
if start-issue.SnippetOffset > 0 {
start = start - issue.SnippetOffset
}
end := (int64)(file.Line(pos))
end = end + issue.SnippetOffset
var code string
if file, err := os.Open(file.Name()); err == nil {
defer file.Close() // #nosec
code, err = issue.CodeSnippet(file, start, end)
if err != nil {
return err.Error()
}
}
return code
}
// GetIntTypeInfo extracts properties of an integer type.
func GetIntTypeInfo(t types.Type) (IntTypeInfo, error) {
u := t.Underlying()
if ptr, ok := u.(*types.Pointer); ok {
u = ptr.Elem().Underlying()
}
basic, ok := u.(*types.Basic)
if !ok {
return IntTypeInfo{}, fmt.Errorf("not a basic type: %T", u)
}
var info IntTypeInfo
switch basic.Kind() {
case types.Int:
info = IntTypeInfo{Signed: true, Size: 64, Min: math.MinInt64, Max: math.MaxInt64}
case types.Int8:
info = IntTypeInfo{Signed: true, Size: 8, Min: math.MinInt8, Max: math.MaxInt8}
case types.Int16:
info = IntTypeInfo{Signed: true, Size: 16, Min: math.MinInt16, Max: math.MaxInt16}
case types.Int32:
info = IntTypeInfo{Signed: true, Size: 32, Min: math.MinInt32, Max: math.MaxInt32}
case types.Int64:
info = IntTypeInfo{Signed: true, Size: 64, Min: math.MinInt64, Max: math.MaxInt64}
case types.Uint:
info = IntTypeInfo{Signed: false, Size: 64, Min: 0, Max: math.MaxUint64}
case types.Uint8:
// Byte is often an alias for Uint8
info = IntTypeInfo{Signed: false, Size: 8, Min: 0, Max: math.MaxUint8}
case types.Uint16:
info = IntTypeInfo{Signed: false, Size: 16, Min: 0, Max: math.MaxUint16}
case types.Uint32:
info = IntTypeInfo{Signed: false, Size: 32, Min: 0, Max: math.MaxUint32}
case types.Uint64, types.Uintptr:
info = IntTypeInfo{Signed: false, Size: 64, Min: 0, Max: math.MaxUint64}
default:
return IntTypeInfo{}, fmt.Errorf("unsupported basic type: %v", basic.Kind())
}
return info, nil
}
// GetConstantInt64 extracts a constant int64 value from an ssa.Value
func GetConstantInt64(v ssa.Value) (int64, bool) {
if c, ok := v.(*ssa.Const); ok {
if c.Value != nil {
if val, ok := constant.Int64Val(c.Value); ok {
return val, true
}
}
}
if unOp, ok := v.(*ssa.UnOp); ok && unOp.Op == token.SUB {
if val, ok := GetConstantInt64(unOp.X); ok {
return -val, true
}
}
return 0, false
}
// GetConstantUint64 extracts a constant uint64 value from an ssa.Value
func GetConstantUint64(v ssa.Value) (uint64, bool) {
if c, ok := v.(*ssa.Const); ok {
if c.Value != nil {
if val, ok := constant.Uint64Val(c.Value); ok {
return val, true
}
}
}
return 0, false
}
// GetSliceBounds extracts low, high, and max indices from a slice instruction
func GetSliceBounds(s *ssa.Slice) (int, int, int) {
var low, high, maxIdx int
if s.Low != nil {
if val, ok := GetConstantInt64(s.Low); ok {
low = int(val)
}
}
if s.High != nil {
if val, ok := GetConstantInt64(s.High); ok {
high = int(val)
}
}
if s.Max != nil {
if val, ok := GetConstantInt64(s.Max); ok {
maxIdx = int(val)
}
}
return low, high, maxIdx
}
// GetSliceRange extracts low and high indices as int64.
// High is returned as -1 if it's missing (extends to the end).
func GetSliceRange(s *ssa.Slice) (int64, int64) {
var low, high int64 = 0, -1
if s.Low != nil {
if val, ok := GetConstantInt64(s.Low); ok {
low = val
}
}
if s.High != nil {
if val, ok := GetConstantInt64(s.High); ok {
high = val
}
}
return low, high
}
// ComputeSliceNewCap determines the new capacity of a slice based on the slicing operation.
// l, h, maxIdx are the extracted low, high, and max indices. oldCap is the capacity of the original slice.
// It handles both 2-index ([:]) and 3-index ([: :]) slice expressions.
func ComputeSliceNewCap(l, h, maxIdx, oldCap int) int {
if maxIdx > 0 {
return maxIdx - l
}
if l == 0 && h == 0 {
return oldCap
}
if l > 0 && h == 0 {
return oldCap - l
}
if l == 0 && h > 0 {
return h
}
return h - l
}
// IsFullSlice checks if the slice operation covers the entire buffer.
func IsFullSlice(sl *ssa.Slice, bufferLen int64) bool {
l, h := GetSliceRange(sl)
if l != 0 {
return false
}
if h < 0 {
return true
}
return bufferLen >= 0 && h == bufferLen
}
// IsSubSlice checks if the 'sub' slice is contained within the 'super' slice.
func IsSubSlice(sub, super *ssa.Slice) bool {
l1, h1 := GetSliceRange(sub) // child
l2, h2 := GetSliceRange(super) // parent
if l2 > l1 {
return false
}
if h2 < 0 {
return true // parent covers all, so child is sub
}
if h1 < 0 {
return false // parent has bound but child doesn't
}
return h1 <= h2
}
// GetBufferLen attempts to find the constant length of a buffer/slice/array
func GetBufferLen(val ssa.Value) int64 {
current := val
for {
t := current.Type()
if ptr, ok := t.Underlying().(*types.Pointer); ok {
t = ptr.Elem().Underlying()
}
if arr, ok := t.(*types.Array); ok {
return arr.Len()
}
if sl, ok := current.(*ssa.Slice); ok {
current = sl.X
continue
}
break
}
return -1
}
// BuildCallerMap builds a map of function names to their call sites
// BuildCallerMap fills the provided map with all calls found in the given functions.
func BuildCallerMap(funcs []*ssa.Function, callerMap map[string][]*ssa.Call) {
TraverseSSA(funcs, func(b *ssa.BasicBlock, i ssa.Instruction) {
if c, ok := i.(*ssa.Call); ok {
var name string
if c.Call.Method != nil {
name = c.Call.Method.FullName()
} else {
name = c.Call.Value.String()
}
callerMap[name] = append(callerMap[name], c)
}
})
}
// toUint64 casts int64 to uint64 preserving the bit pattern (2's complement) and suppresses the linter warning.
func toUint64(i int64) uint64 {
return uint64(i) // #nosec
}
// toInt64 casts uint64 to int64 preserving the bit pattern and suppresses the linter warning.
func toInt64(u uint64) int64 {
return int64(u) // #nosec
}
// GetDominators returns a list of dominator blocks for the given block, in order from root to the block.
func GetDominators(block *ssa.BasicBlock) []*ssa.BasicBlock {
var doms []*ssa.BasicBlock
curr := block
for curr != nil {
doms = append(doms, curr)
curr = curr.Idom()
}
// Reverse to get root-to-block order
for i, j := 0, len(doms)-1; i < j; i, j = i+1, j-1 {
doms[i], doms[j] = doms[j], doms[i]
}
return doms
}
// isConstantInRange checks if a constant value fits within the range of the destination type.
func IsConstantInTypeRange(constVal *ssa.Const, dstInt IntTypeInfo) bool {
if constVal.Value == nil {
return false
}
if dstInt.Signed {
val, ok := constant.Int64Val(constVal.Value)
if !ok {
return false
}
return val >= dstInt.Min && toUint64(val) <= dstInt.Max
}
val, ok := constant.Uint64Val(constVal.Value)
if !ok {
return false
}
return val <= dstInt.Max
}
// ExplicitValsInRange checks if any of the explicit positive or negative values are within the range of the destination type.
func ExplicitValsInRange(pos []uint, neg []int, dstInt IntTypeInfo) bool {
for _, v := range pos {
if uint64(v) <= dstInt.Max {
return true
}
}
for _, v := range neg {
if int64(v) >= dstInt.Min {
return true
}
}
return false
}
// TraverseSSA visits every instruction in the provided functions using the visitor callback.
func TraverseSSA(funcs []*ssa.Function, visitor func(block *ssa.BasicBlock, instr ssa.Instruction)) {
for _, f := range funcs {
for _, b := range f.Blocks {
for _, i := range b.Instrs {
visitor(b, i)
}
}
}
}
type operationInfo struct {
op string
extra ssa.Value
flipped bool
}
// minBounds computes the minimum of two uint64 values, treating them as signed if !isSrcUnsigned.
func minBounds(a, b uint64, isSrcUnsigned bool) uint64 {
if !isSrcUnsigned {
if toInt64(a) < toInt64(b) {
return a
}
return b
}
if a < b {
return a
}
return b
}
// maxBounds computes the maximum of two uint64 values, treating them as signed if !isSrcUnsigned.
func maxBounds(a, b uint64, isSrcUnsigned bool) uint64 {
if a == toUint64(minInt64) { // Using MinInt64 as "not set" for signed-capable minValue
return b
}
if b == toUint64(minInt64) {
return a
}
if !isSrcUnsigned {
if toInt64(a) > toInt64(b) {
return a
}
return b
}
if a > b {
return a
}
return b
}
// isUint checks if the value's type is an unsigned integer.
func isUint(v ssa.Value) bool {
if basic, ok := v.Type().Underlying().(*types.Basic); ok {
return basic.Info()&types.IsUnsigned != 0
}
return false
}
// getRealValueFromOperation decomposes an SSA value into its base value and any simple arithmetic operation applied to it.
func getRealValueFromOperation(v ssa.Value) (ssa.Value, operationInfo) {
switch v := v.(type) {
case *ssa.BinOp:
switch v.Op {
case token.SHL, token.ADD, token.SUB, token.SHR, token.MUL, token.QUO:
if _, ok := GetConstantInt64(v.Y); ok {
return v.X, operationInfo{op: v.Op.String(), extra: v.Y}
}
if _, ok := GetConstantInt64(v.X); ok {
return v.Y, operationInfo{op: v.Op.String(), extra: v.X, flipped: true}
}
}
case *ssa.UnOp:
switch v.Op {
case token.SUB:
return v.X, operationInfo{op: "neg"}
case token.MUL:
// Follow pointer dereference.
if unOp, ok := v.X.(*ssa.UnOp); ok && unOp.Op == token.MUL {
return getRealValueFromOperation(unOp)
}
// If it's a field address, keep going.
if fieldAddr, ok := v.X.(*ssa.FieldAddr); ok {
return fieldAddr, operationInfo{op: "field"}
}
}
case *ssa.FieldAddr:
return v, operationInfo{op: "field"}
case *ssa.Alloc:
return v, operationInfo{op: "alloc"}
}
return v, operationInfo{}
}
// isEquivalent checks if two SSA values are structurally equivalent.
func isEquivalent(a, b ssa.Value) bool {
if a == b {
return true
}
if a == nil || b == nil {
return false
}
// Handle distinct constant pointers
if aConst, ok := a.(*ssa.Const); ok {
if bConst, ok := b.(*ssa.Const); ok {
return aConst.Value == bConst.Value && aConst.Type() == bConst.Type()
}
}
switch va := a.(type) {
case *ssa.BinOp:
if vb, ok := b.(*ssa.BinOp); ok {
return va.Op == vb.Op && isEquivalent(va.X, vb.X) && isEquivalent(va.Y, vb.Y)
}
case *ssa.UnOp:
if vb, ok := b.(*ssa.UnOp); ok {
return va.Op == vb.Op && isEquivalent(va.X, vb.X)
}
}
return false
}
// isSameOrRelated checks if two SSA values represent the same underlying variable or related struct fields.
func isSameOrRelated(a, b ssa.Value) bool {
if a == b {
return true
}
if a == nil || b == nil {
return false
}
if aExt, ok := a.(*ssa.Extract); ok {
if bExt, ok := b.(*ssa.Extract); ok {
return aExt.Index == bExt.Index && isSameOrRelated(aExt.Tuple, bExt.Tuple)
}
}
aVal, aInfo := getRealValueFromOperation(a)
bVal, bInfo := getRealValueFromOperation(b)
if aVal == bVal && aInfo.op == bInfo.op {
return true
}
if aField, ok := aVal.(*ssa.FieldAddr); ok {
if bField, ok := bVal.(*ssa.FieldAddr); ok {
return aField.Field == bField.Field && isSameOrRelated(aField.X, bField.X)
}
}
if aUnOp, ok := aVal.(*ssa.UnOp); ok {
if aUnOp.Op == token.MUL {
if bUnOp, ok := bVal.(*ssa.UnOp); ok && bUnOp.Op == token.MUL {
return isSameOrRelated(aUnOp.X, bUnOp.X)
}
}
}
return false
}